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1. Introduction

A common application of FASCODE1 ,2 calculations is a comparison to measured
spectra. In order to make a proper comparison, the calculated spectrum must be convolved, or
smoothed, with the spectral response function appropriate to the instrument being modeled.
Frequently the measurements are made with a Fourier Transform Spectrometer (FTS) for which
the spectral response function is known and which may be modified during data reduction 3. By
apodizing the interferogram, the shape and resolution of the spectral response function can be
controlled.

In previous versions of FASCODE, spectral smoothing or "scanning" was performed by
an actual convolution in the spectral domain. The scanning function is calculated over some
finite spectral extent--typically some number of halfwidths or zeros from the line center--and is
convolved with the calculated spectrum. The accuracy of the result depends strongly on the
spectral extent: for a function like sinc, whose sidelobes fall off slowly, the scanning function
must be calculated out to more than 100 halfwidths to achieve accuracies at the 0.2 percent level.
However, the computational time varies linearly with the spectral extent of the scanningt funcrion
so that accurate calculations with functions like sinc can be expersivsc.

We have added the capability to FASCODE to model the spectral response function
associated with an FTS by using Fourier transforms. This technique directly mimics the
operation of an FTS: the calculated spectrum is transformed into an "interferogram'. "apodized".
and then transformed back to the spectral domain. This technique is more accurate than the
convolution technique and in many cases, more efficient. The user is given the choice of a
number of commonly used apodization functions to define the shape of the scanning function.
and may specify the resolution in terms of either the half width of the scanning function or the
optical path difference of an equivalent interferometer.

I Clough, S., A., F. X. Kneizys, L. S. Rothman, and W. 0. Gallery, 198 1,Atmospheric spectral

transmittance and radiance: FASCODIB, P'roc. of Soc. Photo. Opt._ nstrm. Eng4, 277.
152-166.

2 Clough, S. A., F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu. and
L. A. Hall, 1989, FASCOD3: Spectral Simulation, in IRS '88: Current Problems in
Atmospheric Radiation, J. Lenoble and J. F. Gelyn (Eds.), A. Deepak Pub.

3 Bell, R. J., 1972, Introductoa Fourier Transform Spectroscopy, Academic Press. New York
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2. Theory

We will begin by briefly describing the mathematics of Fourier Transform Spectroscopy
and then make the connection with the present work.

2.1 Fourier Transform Spectroscopy

The quantity measured by an interferometer is the interferogram Ax) as a function of the
optical path difference x. For an ideal spectrometer, I is related to the incident spectrum SN)
through the Fourier transform F.•

+00

l(x) = f(S) = f S(i) exp(-2ntix-) d-u ()
-00

In practice, I(x) is only measured out to L, the maximum optical path difference of the
interferometer. The spectrum S'(u) recovered from the interferogram is obtained from:

+L

S'(1j) = f(Al) = fA(x) 1(x) exp(-27ritu) dx (2)

-L

where A(x) is the apodization function applied to the interferogram to control the shape of the
scanning function.

The convolution of two functions S and R is defined by the following expression:

S'(.) = R tr S = fR(u) S('u'-x) du' (3)

where the symbol * represents convolution. A fundamental theorem of Fourier transforms
states that the convolution of two functions equals the transform of the product of the transforms
of the individual functions. Applying this theorem to Eq. 2 gives:

S'(*o) F F(A) *• F(1) = R(u) *" S(u) (4)

where R(u) = F(A(x)). R(-o) is the scanning function associated with the apodization function
A(x).

If no apodization is applied, then A(x) is effectively a rectangle of width equal twice the
optical path difference. The scanning function associated with this apodization is the sinc
function defined as:

sinc(uj) = sin(21cihL)/(2niUL) 5)
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This function is characterized by relatively large side lobes which fall off slowly. It is possible
to trade off resolution against smaller, more rapidly decaying side lobes by choosing different
apodization functions. Figure I shows five common apodization/scanning function pairs. These
figures correspond to the HIS 4 interferometer with a maximum path length difference of
1.3735 cm. This instrument was chosen as a representative Fourier transform spectrometer.

In practice, interferograms are discretely sampled on a grid xi = ix, i= 0 to N- 1, where
,_"x is the sampling interval and N is the number of points. (Since the ideal interferogram is
symmetric around zero, only the positive half need be retained.) The continuous Fourier
transform in Eq. 2 is replaced with the discrete transform:

N-I

S'('j) = F(AI) = .4(xi) I(xi) exp(-27tixivj) (6)
i=0

The frequency grid is given by uj = j Au, j= 0 to N-1, where Au = 1/(2L). The Nyquest
frequency, umax = (N-1)Au = l/(2Žx). is the highest frequency that can be properly sampled. It
frequencies higher than this are present in the signal, then tihey will be aliased down t1 lower
frequencies in the recovered spectrum and the spectrum will be distorted.

2.2 Spectral Smoothing

In order to compare a FASCODE spectrum to a measured spectrum. the calculated
spectrum must be convolved with the scanning function appropriate to the instrument being
modeled. This convolution has been implemented using Fourier transforms:

S'(0) = f(T(R) - F(S)) = R r S / 7

where S is the monochromatic spectrum, R is the scanning function, and S' is the smoothed
spectrum. By analogy to Fourier transform spectroscopy, F(S) is the interferogram and F(R) is
the apodization function.

Note, however, that the calculated spectrum is limited from "o1 to 02. Before
traiisforming the spectrum, it is shifted in frequency down to the range 0 to x2-I. In the
interferogram domain, we now have Ax = l/(2(2-u1)) and L = l/(2Au).

However, a significant difference exists between smoothing a calculated spectrum and
apodizing an interferogram, having to do with edge effects. As a consequence of using discrete
Fourier transforms, the measured spectrum must be thought of as repeating infinitely in the
positive and negative directions, with a period of tUmax = 1/Ax. Near the edges of the spectrum.
at 0 and umax, the wings of the scanning function encounter the repeated spectra.

4 Revercomb, H. E., H. Buijs, H. B. Howell. D. D. LaPorte, W. L. Smith, and L. A. Sromovskv.
1988, "Radiometric Calibration of IR Fourier Transform Spectrometers: Solution to a
Problem with the High-Resolution Intertierometer Sounder," Appl. Opt. 27. p32(10
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Figure 1. Five Common Scanning Function/Apodization Function Pairs: Sinc/Rectangle.
Sinc 2/Triangle, Beer/(I-(x/L) 2)2, Hamming, and Hanning. The maximum displacement ot
1.3735 cm corresponds to the HIS instrument.
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The calculated spectrum is limited from "I, to u,, or. after shifting, from 0 to I ),. This
spectrum repeats. with a period of u2-Lj1 , so that effectively u-, wraps around to -u,. Near the
edges of this spcctr,-m, the wings of the scanning function encounter a spectrum different fromi
that seen in the measured spectrum. This effect is especially severe when modelingi unapodized
spectra with the sinc scanning2 function. whose side lobes are particularly large. In order to
minimize this problem, the range of the calculated spectrum (I.~ to u,) ,hould he made
significantly larger than the actual range of interest.

The seven scanning functions included in FFTSCAN are listed in Table I almon w ith tile
corresponding apodization function. For an FTS, the most convenient measure of the wijdth ,,I
the scanning function is in terms of the parameter a which equals the reciprocal of the maxiItmu
optical path difference L of an equivalent interferometer. a is approximately the rcOlutioM o)t

the apodized spectra, according to the Rayleigh criterion. It is also common to characterie the
resolution of an instrument in terms of the halfwidth at half maximum tHWHHMI and the
distance to the first zero (FZ). The ratios aJHWHM and aiFZ are listed in Table I anrd can be
used to convert from one form to another.

Theoretically, the "apodization" function fTrR) can be computed either as the FlO rler
transform of the scanning function or analytically from the function listed in Tahle I Ihc
analytic method is more efficient but it assumes that the scanning functio ,, i'nfilte In extenIt.
Because discrete transforms are used, the extent of the scanning function is limited to o-, - I)J.
The discrete transform of the scanning function over this extent will not exactly equal the
apodization function, and if the halfwidth of the scanning function approaches the ranec
"m2 - .01, then the difference can become significant. This effect is illustrated in Figure 2. Here
the scanning function is a sine2 with a HWHM or 0.3227cm-1, which corresponds to the
resolution of the HIS instrument. This scanning function is to be applied to a spectrum %ý ith In

extent of 12.9 cm- 1 . which corresponds to 40 halfwidths tHWHlM/uo2 - 1,1 = CR in Table I iý
The analytic apodization function is a triangle of base 1.376 cm. The plot labeled "Error in Scan
Function" shows the difference between the analytic sinc 2 function and the FFT of the triangular
apodization function. Similarly, the plot labeled "Error in the Apodization Function" showvs the

difference between the analytic triangle function and the FFT of the sinc2 wc:innint function.
This effect is greatest for functions with sharp edges, e.g. the rectangle and triangle. The

column CR in Tablel lists for each function the critical ratio of (1'o - 1a1)/HWHNI at which the
maximum error in the scan function due to this effect becomes approximately 0.05 percent.

In view of this fact, the program has been designed with the capability to calculate the
apodization function by either method. By ,-fault, the program chooses which method to use
based upon the ratio (u-2 - i0t)/HWHM. This default can be overridden (see user instructtins.)

5



Table 1. Scanning Function/Apodization Function Pairs

# Name S,,aning Function Apodization Function a/HWHM a/FZ CR

L Triangle/Sir,;" I - u/a, lul I a, 0: hol > a t.sin(tta)/l(ra)f)2 2.0 1.0 40

2. Gauss,Gauss exp(-0.5 oula)2) exp(-2mt (a.,- 0X849322 i NA.> 1)

3. Sinc 2 /Triangle (sin(mn/a)/(rn'ua))2 I - xa, IA <_ l/a, 0: I1d > I/a 2.257609 1 0 40)

Sinc!Rectangle sin(u)/(u) 1: ix5 </a. 0: hxi > I/a 3.3148(X) 20

5. Beer J(5/2,u)/u( 5/2) (0 - (%a) 2) 22 100669 91725 0

6. Hamming sinc(u) + c I sinc(u+nt) + (I + 2cI cosotica)I( 1+2c I) 2.195(76 1.0 2_0
sinc(u-lt))

7. Hanning sinc(u) + .5 (sinc(u+nt) + (1 + cos(iLta))/2 2.0 1.0 20
sinc(u-rt))

Notes:

a. "o = frequency, in cm- 1, x = optical path difference. in cm, u = 2,,u/a

b. a = I/L. where L is the maximum optical path difference of an equivalent
interferometer. a determines the resolution, or the width of the scannim!

function.

c. HWHM the halfwidth at half maximum of the scanning function.

d. FZ is the distance from the center of the scanning function to the first 7ero.

e. CR = the critical value of the ratio of the extent of the spectrum u- - u1 and the

HWHM. When this ratio is less than CR, the apodization function is calculated as

the FFT of the scanning function. When the ratio is greater, it is calculated

analytically. (See the text.)

f. J(512,u)/u( 512) = ((3-u2) sin(u) - 3ucc..;(u))ju5; J(n,u) is the Bessel function of
order n

g. c I = 0.428 7 52

By necessity, both the interferogram and the recovered spectrum from an FTS are real

functions. The transform of a real function is symmetric and that of a symmetric function is

real. so that both the interferogram and the spectrum must be symmetric. Itf only a one-sided

interferogram is measured. then it must be reflected around the origin to produce a two-sided

interferogram before transforming. However, the convolution in Eq. 7 applies to any real

functions, symmetric or not. Therefore, the calculated spectrum S need not be reflected to

produce a symmetric function before transforming. (The scanning function R('U) is svmmetric.)

The "interferogram" f(S) will be a complex function but the convolved spectrum S' will again

be real.
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Figure 2. Analytic Versus Discrete Fourier Transform Calculations of: the Sinc2 Scanning
Function and :he Triangular Apodization Function. The plot labelea "Error in Scan Function" is
the difference between the sinc 2 function and the FFT of the triangle while the plot labeled
"Error in Apod Function" is the difference between the triangle and the FFT of the
sinc 2 function. See the text for further explaination.

2.3 Prescanning With a Boxcar

In cases where the width of the scanning function i's large compared to the frequency
spacing of the input spectrum, significant computational savings can be achieved by first con-
volving the spectrum with a rectangle whose width is small compared to that of the scanning
function. In this procedure, M adjacent points are averaged to one output point at the mean
frequency of the M points. This form of convolution, referred to here as prescanning with a
boxcar, is very fast and reduces the number of output points by a factor of M. The resulting
spectrum is then convolved with the desired scanning function using Fourier transforms.

7



Mathematically, the procedure relies on the fact that convolution is associative. Let S be
the input spectrum, R1 be a scanning function of halfwidth at half maximum ct, and R-2 be a
rectangle of half width M AMi/2. Then:

S" = (S •.r R.) t, R1I = S -ý (R• •R) 8

Let r = a/(M Av/2). If r>> 1, that is, if the rectangle R, is narrow compared to the scanning
function R , then R- 5, Rl = R1 and S" = S = S ` R1. Here, "narrow" is taken to mean that r >
8. The error introduced by this approximation will be shown later.

It is also possible to partially compensate for the error introduced by boxcaring. This
procedure is as follows. Using the notation from Eq. 4:

S" = F(S i Rl)

= F( F(S) • FkR,))

"= F( F(S) • f(R 2 ) - F(RI) / F(R2 ))

= 'F( F(Sr R2 ) - F(R1 ) / F(R2 )) (9)

In the last form of Eq. ), dividing by F(R2) removes the effect of the convolution of S with R,.
Since R2 is a narrow rectangle, F(R-2) is a broad sinc function. In practice, the apodized
"interferogram" is divided by F(R2) before it is transformed back to the spectral domain.

The actual cor'zutation of 5' is performed using discrete transforms, not integrals. and
the convolution shown as S v-z R2 resamples the spectrum, taking only every M'th point. It is the
resampling which produces the computational efficiency, since it reduces the number of points
in the subsequent Fourier transforms by a factor of M. However, because of resampling. the
deconvolution process is not exact; therefore, it is fLot possible to eliminate completely the
smoothing effects of the boxcar. The error associated with boxcaring will be discussed next.

Boxcaring introduces two type of errors--frequency displacement and convolution error.
The first type of error--frequency displacement--is illustrated in Figure 3 which shows the effect
of boxcaring a delta function. As can be seen in the figure, the position of the delta function can
be shifted by as much as M Au/2, depending on the alignment of the resampled grid relative to
the delta function. A similar shift can occur in a spectral feature of small but finite width, as will
be seen later.

Boxcaring also introduces an error due to the convolution effect of the boxcar, which can
only be partially compensated for by the deconvolution process. This error plus the frequency
displacement error are both illustrated in Figure 4. In this example, the (synthetic) input
spectrum is a single Lorenz line of HWHM = 0.08 cm-I on a grid of 0.01 cm-1 . The scanaing

8



Original Line
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SResampled Line
Center

V

Delta Function Resampled Delta Function

Boxcar

Resampled Grid

Original Gri& ' A

Wavenumber

Figure 3. Schematic Diagram Showing the Effect of Boxcaring A Delta Function, The input
spectrum containing a delta function is boxcared and resampled with a value of M = 7. The
output spectrum contains a delta function shifted in frequency by MAu/2.

function is a sinc 2 of HWHM = 0.3 cm-1. A value of r = 8 gives a value of M =

2x0.3/(8x0.01) = 7 and a boxcar of half width = 7x0.1/2= .035 cm- 1. The output spectra
are therefore on a grid of 0.07 cm" 1. The convolved spectrum has been calculated without
boxcaring and with boxcaring for 4 different alignments of the resampled grid, each shifted by
0.01 cm-1 . The error spectra are the difference between the spectra with boxcaring and without
boxcaring but resampled on the grid of the boxcared spectrum. The error spectra are shown both
with and without deconvolution.

Considering the deconvolved spectra, the maximum error is as small as 0.05 percent, in
the case where the line center falls on a resampled grid point (solid line), and as large as 0.2
percent when the line center falls halfway between the resampled grid points (dashed line).
Without deconvolution, the corresponding errors are 0.2 and 0.3 percent respectively. Since the
alignment of spectral features relative to the sampling grid is arbitrary, the maximum error in

9



Spectrum
1.0 ___Input Spectrum
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Figure 4. An Example of the Error, With and Without Deconvolution, Introduced by Boxcaring
the Input Spectrum. The input spectrum consists of a single Lorenz line of HWHM of 0.04
cm-1 on a 0.01 cm-I grid. The scanning function is a sinc of HWHM of 0.3 cm- 1. with r = 8
and M = 7, and the output grid spacing is 0.07 cm-1. The four lines on each error plot
correspond to different allignments of the output grid relative to the input grid (see text.)
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each case must be assumed. Under this assumption, the deconvolution process decreases the
boxcaring error by only one third. However, deconvolution represents only a small percent of
the computational time so that deconvolution is still worth the computational cost.

The level of error seen in this figure is typical of the error for a value of MRATIO of 8.
However, the actual error in a particular situation will vary from this example. For cases where
high accuracy (error less than 0.5 percent) is required, the user is urged to experiment with
different values of the parameters MRATIO and IVX and verify the accuracy for the particular
application. The default value of MRATIO adopted for FFTSCAN is 12.

II



3. Fast Fourier Transform

The basic Fast Fourier Transform package used here is from Press 5 . Since the spectrum
is a real function, its transform is Hermitian, that is, the negative components are the complex
conjugate of the positive components and only the positive components need be stored. We used
the subroutine REALFT. FOR, which can calculate both the forward transform of a real function
to produce an Hermitian function, and the inverse transform of an Hermitian function to produce
a real function.

A FASCODE spectrum can contain many thousands of points, more than can be stored in
memory and transformed in place. Mark Esplin, of Stewart Radiance Lab has kindly provided a
disk-based FFT routine which can transform an array of any size 6 . In the disk swapping FFT.
the set of input data points is divided into blocks and written to a direct access file. Only two of
these blocks of data reside in the central memory of the computer at a given time. As the
transformation progress, these blocks of data are read, processed, and then rewritten to the same
locations. As the routine proceeds, the data is first sorted into a particular order, an in-memory
FFT (the same REALFT. FOR mentioned previously) is then applied to each block of data. and
finally the data from the various blocks are combined to form the Fourier transformation of the
entire data set. The manner in which the data are sorted into the appropriate blocks and the wav
the data from the blocks are combined into the Fourier transformation of the entire data set is an-
alogous to that of the standard FFT. In this analogy, blocks of data correspond to the individual
elements of the standard FFT and an array of data blocks on the mass storage device corresponds
to the linear array of input data points. In addition to the blocks of data, there are disk blocks
generated that contain sine-cosine information. The number of these blocks is 1/8 the number of
data blocks. Both the size of each block and the number of data blocks need be a power of 2.

The parameter LPTSMX determines the block size for the FFT. (See Section 6 for a
discussion of this parameter.) If the spectrum has fewer than LPTSMX points, then the FFT is
done in memory: if it has more, the disk-based FFT is used. In either case, the spectrum is zero
filled as needed so that the total number of points (and of blocks for the disk-based FFT) is a
power of 2. The difference in computational time for the in-memory versus disk-based FFT for
the same number of points varies depending on the target computer. The following table gives
one example of a spectrum of 131072 = 217 points scanned both ways on a Sun SparcStation. In
this case, the disk-based case took almost 3 times as long as the in-memory case. On other
machines, the ratio is reported to be smaller.

LPTSMX Blocks Execution Time (sec)

In Memory 131072 1 21.5

Disk-Based 4096 32 55.5

5 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1987: Numerical Recipes
in FORTRAN, Cambridge University Press, NY.

6 Mark Esplin, Stewart Radiance Lab, Bedford, MA., private communication.
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4. Program Instructions and Notes

4.1 User Instructions

FFTSCAN is controlled by a single input recoid, similar to that for the normal scanning
function. The details of this record are as follows:

Field: HWHM Vi V2 JEMIT JFN MRAT DVOUT
Column: 1-10 11-20 21-30 31-35 36-40 41-45 46-55

Field: IUNIT FIL NFIL JUNIT IVX NOFIX
Column: 56-60 61-65 66-70 71-75 76-78 79-80

Format (3FI0.3,315, FlO.3,415,I3,I2)

HWHm Half Width at Half Maximum of the scanning function, or if JFN < 0. the
maximum optical path difference of an equivalent interferometer. If HWHYI-¶ _< 0,
then exit FFTSCAN.

V1 Initial wavenumber for the scanned result

V2 Final wavenumber for the scanned result

JEMIT = 0: convolve with transmittance
= 1: convolve with radiance

JFN Selects the Scanning Function (See Table 1)
= 0: Boxcar. Halfwidth is truncated to M du/2, where M is an integer and du is

the grid spacing of the input spectrum
= 1: Triangle
= 2: Gauss
= 3: Sinc2

= 4: Sinc
= 5: Beer
= 6: Hamming
= 7: Hanning
If JFN < 0, then HWHM is the maximum optical path difference of an equivalent
interferometer, apodized to give the scanning function given by IJFNI.

MRAT For prescanning with a boxcar, the ratio of HWHM of the scanning function to
the halfwidth of the boxcar, default = 12. If MRAT < 0, no boxcaring is
performed (see Notes.)

DVOUT Output grid spacing (Not used, reserved for future use)
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IUNIT Unit number of the file containing the spectrum to be scanned, default = 11 (see
Notes)

IFIL Sequential number of the first FASCODE file on IUNIT to be scanned

NFIL Number of FASCODE files on IUNIT to be scanned,
beginning with IFIL

JUNIT Unit number of the file containing the output spectrum, default = 12 (see Notes)

IVX = -1: Scanning function is calculated as the FFT of the Apodization function
= 0: Program decides how to calculate the scanning function, using CR from

Table 1.
= 1: Scanning function is calculated analytically

NOFIX For prescanning with a boxcar: if non-zero, then do not deconvolve the scanned
spectrum with the boxcar

4.2 Notes

The program expands the spectral interval V1 to V2 to V1 - CR(JFN)-HWHM to V2 +
CR(JFN)*HWHM before smoothing (see Table 1.) This expansion ensures that edge effect do
not contaminate the endpoints of the scanned spectrum. If there is insufficient data for this
expansion, then the maximum expansion possible is performed and an informative message is
written. The output spectrum extends from v 1 -2dt to V2 +2d-u, where duo is the output spacing,
The extra points at either end allow for four-point interpolation of the spectrum at the endpoints.

The default value of MRAT should reduce the boxcaring error sufficiently for most
applications (better than 0.2 percent). For greater accuracy, it is necessary to increase MRAT,
or set it to -I to turn off boxcaring.

The spectral input and output files are on units IUNIT and JUNIT, which default to 12
and 11 respectively. For input, if no file is open on unit = IUNIT then the program looks for a
file named TAPExx, where xx = IUNIT (e.g. TAPE12.) If a file by this name does not exist.
then an error results and then the program stops. For output, if a file is open on unit = JUNIT
then that file is rewound and used. If not, then the program looks for a file by named TAPExx.
If that file does exist, then an error results and the program stops. If it does not exist, then a new
file by that name is opened for output. If IUNIT or JUNIT are negative, then the program
reads in the spectral file names (60 characters maximum, including the path) on the next record.
If the named input file does not exist or if the named output file does exist, then an error results
and the program stops. Otherwise, they are opened on the first free unit numbers between 61
and 99.
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5. Examples

Figure 5 shows an example of a FASCODE spectrum smoothed using FFTSCAN. The
calculated spectrum models the upward radiance at 72 km for the US Standard Atmosphere.
The monochromatic calculation extended from 600 to 800 cm-1 with a dio of 0.000953. In
Figure 5a, the monochromatic FASCODE spectrum was smoothed with a sine scanning function
of HWHM = 0.2196 cm-1, corresponding to the HIS resolution. Figure 5b shows the error in the
scanned spectrum from using boxcaring with deconvolution (r = 12). This value of r (or M.AT
in the user instructions) gives a value of M of 38, resulting in a 38 fold reduction in the number
of points in the spectrum. The maximum error of about 1xl0-8 is about 0.5 percent of the
typical spectral excursion of 2x10-6 or about 0.2 percent of the maximum spectral value of
8x10-8 . For reference, Figure 5c shows the error using the standard FASCODE 3 convolution
with a bound of 80 halfwidths. The reference spectrum for calculating the errors in Figures 5b
and c is the FFTSCAN calculation without boxcaring, interpolated to the proper grid.

Table 2 compares the computational time and maximum error for the calculations shown
in Figure 5. The calculations were performed on an Sun SparcStation and the scanningZ
functions were applied from 625 cm-1 to 775 cm-1 . The results for scanning with the sinc 2 and
the triangular scanning functions are also shown. Note that the boxcaring errors for the other
functions are four times less than that for the sine function.

These results show that for the sinc function, FFTSCAN with boxcaring provides a three-
fold increase in speed and a better than two fold increase in accuracy over FASCODE. For the
sinc2 and the triangle, the execution time for the two programs is about equa!, but FFTSCAN is
again twice as accurate. The reference spectrum for calculating the errors is again the
FFTSCAN calculation without boxcaring, interpolated to the proper grid.
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Spectrum Smoothed with FFTSCAN
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Figure 5. Example of a Smoothed Spectrum and the Associated Error: a. FASCODE Calculated
Spectrum Smoothed by FFTSCAN, b. The Error In the Smoothed Spectrum from Using
FFTSCAN With Boxcaring, and c. Error From Using the FASCODE3 Scanning Function. The
scanning function is a sinc with a HWHH of 0.2196 cm-1 , corresponding to the HIS instrument
in the unapodized mode.
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Table 2. Comparison of Computational Time and Accuracy, FFTSCAN versus FASCODE,
For the Sinc, Sinc2, and Triangle Scanning Functions.

Computational Time Maximum Error
(sec) (Percent Radiance)

Scanning Option Sinc Sinc2  Triangle Sinc Sinc2  Triangle

FFTSCAN, No Boxcar 117 117 117 (NA) (NA) (NA)

FFTSCAN, With Boxcar 5.8 3.7 3.3 0.2 0.05 0.05

FASCODE3 Convolution 17.9 3.9 3.0 0.5 0.1 0.1

Notes:

a. The computational times refer to a Sun SparcStation. Times are approximate and both
the absolute and the relative times will vary depending on the case.

b. The spectral extent of the smoothed spectrum was from 650 to 775 cm-

c. The monochromatic di) was 0.000953 cm-I

d. The number of points in the scanned function was 167,958 (noboxcaring) and 4419 (with
boxcaring), a reduction of a factor of 38.
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6. Implementation Notes

FFTSCAN is written in ANSI Standard Fortran 77 and is designed to be highly portable.
It was developed on Sun workstation under Unix, and early versions have been ported to a
VAX, a Cyter computer under NOS/VE and an IBM PC. FFTSCAN is designed either to be run
as an independent program or to be included as a module of FASCODE.

The program uses three include files: fftparm. inc, parmcomm.rinc, and
scancomm. inc. These files carry parameters, common blocks, and other declarations used
throughout the program. The file scancomm. inc includes the DOUBLE PRECISION
statements:

Implicit Double Precision (V)
Double Precision XID, SECANT, HMOLID, XALTZ, YID

which may or may not have to be disabled, depending on how it is set in FASCODE. Typically.
it is enabled on a 32 bit machine and disabled on a 64 bit machine. There is no standard syntax
for the include statement and these statements may have to be changed to suit a particular
system. For versions of Fortran which do not support include files, the program may be
distributed with these files already included.

There are a few hardware dependencies related to the disk-btl,-d FFT which must be
considered. If the size of the spectrum is greater than memory set aside for the in-memory FFT.
then the program uses the disk-based FFT. The disk-based FFT divides the input data points
into blocks and writes these blocks to disk as direct access records. An in-memory FFT is per-
formed on each record. The size of each record must be a power of 2. The parameter LPTSMX
sets the maximum size of an in-me -ry FFT and the size of the direct access records. This vari-
able should be set as large as possible for the particular computer since the in-memory FFT is
more efficient. The pitfall that must be avoided is setting LPTSMX too large in which case the
virtual memory system will page the data. Since the points processed by the in-memory FFT
come from widely scattered locations, the number of calls to the disk will be extremely large
(thrashing) and the performance will be very poor. On the other hand, the minimum size of an
FFT is also LPTSMX (this is a design error which will be corrected in the next version.) If
LPTSMX is large but the region to be scanned is small, then the calculation will take unnecessar-
ily long. Therefore, LPTSMX should be set to somewhere between the smallest typical spectral
size and the largest value possible without thrashing. The parameter LPTSMX is set in the
include file fftparm. inc. The user may have to adjust LPTSMX from the default value
(8192 = 213) to be optimum for the target computer.

To determine whether the program is using the in-memory or the disk-based FFT. note
the following line in the output:

FFT: Total number of points xxxxx and blocks = yy
If the number of points yy is 2 or greater, then the disk-based FFT is being used.

The parameter IBLKSZ, declared in the same statement, is the block size of the direct
access records and is used in OPEN statements. Depending on the computer, it may be in words
(e.g., VAX and CDC Cyber) in which case IBLKSZ = LPTSMX, or in bytes (Microsoft Fortran
for the PC, Sun, and Alliant) in which case IBLKSZ = 4*LPTSMX. On a CRAY, which has a
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word size of 64 bits (8 bytes), use IBLKSZ = 8* LPTSMX. In VAX Fortran, the maximum
direct access block size is 4095 words so that the maximum allowed value of IBLKSZ is 2048.
Since this is much smaller than the maximum physical memory, the user may want to use a large
value of LPTSM1X and disable the disk-based FFT capability.

On CDC Cyber machines, the subroutines BUFIN and BUFOUT may have to be changed
to match the those used in FASCODE.

To modify FFTSCAN to include other scanning functions, the subroutines FFTSCN. F
and SCNFNT. F need to be modified. In FFTSCN. F, modify the variables jFNYAXY..
ANAMSES, C, CRATIO, and CLIMIT as appropriate (the definitions of these variables are
given in program comments.) In SCNFNT. F, use an existing scanning function as a example.
and add the equations defining the new function, both in the frequency and in the space domain.
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